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Abstract 
 

The Captcha is the security code designed to perform 

password protection to secure the authenticated user. It uses 

word tests for easy human recognition. The CAPTCHAs are 

then random realizations of the random CAPTCHA word 

starts with an initial random field use Gibbs resampling to re-

simulate portions of the field repeatedly using until the word 

becomes human-readable. In the proposed system Knw-

CAPTCHA is used to differentiate humans from computers. It 

is readable only to humans. The Passwords are used means of 

authentication as passwords are very convenient for users, 

easier to implement and user friendly. Password based systems 

suffer from two types of attacks offline attacks and online 

attacks. Eavesdropping the communication channel and 

recording the conversations taking place on the 

communication channel is an example for offline attack. 

Video CAPTCHA is used to avoid online hackers. 

Keywords:  Image processing, Markov random 

field, security, simulation, statistical information 

compression. 

 

1. Introduction 
 
A CAPTCHA is a “Completely Automated Public Turing test 

to tell Computers and Humans Apart”, widely used to protect 

online resources from abuse by automated agents. He suggests 

that hard artificial intelligence (AI) problems form the test 

basis and defines a (α, β, η)-CAPTCHA as a test that 1) Can 

be solved by at least α proportion of humans (e.g., the English 

speaking adult portion) with a probability of success greater 

than β; 2) if a computer program can solve it with probability 

greater than η in fixed time, then the program can be used to 

solve the hard AI problem. 

 

 A common CAPTCHA is an image of (usually alphanumeric) 

characters to that are easy to identify by English-reading 

humans yet translate hard AI problems for security. 

Segmentation of characters within a word image is error prone 

[3], and continues to be difficult for contemporary OCR 

algorithms [4].Therefore, segmentation should be hard error 

prone [3], and continues to be difficult for contemporary OCR  

 

 

 

 

algorithms. Therefore, segmentation should be hard to ensure 

an OCR-based CAPTCHA is resistant to computer programs. 
Herein, we introduce a general method for generating “KNW- 

CAPTCHAs” with the view that random than is really random 

field simulation meaning people rather than computers will 

know what they behave. A KNW-CAPTCHA is initialized as 

a random field, and the CAPTCHA is then generated via 

partial Gibbs re-sampling in order to provide enough 

information to make the test word human-recognizable, yet 

ensure that OCR remains hard.  

 

The target population for our KNW-CAPTCHAs is English-

readers with better than 20/60 vision though we have little 

control over the participants in our readability studies). We 

establish high β via a readability study and endorse low η via 

experiments with modern OCR programs. 

  

We begin with an overview of past and present text based 

CAPTCHAs. (While there are many alternatives to text based 

CAPTCHAs, such as the image-based IMAGINATION [5], 

which requires users to annotate images, text-based 

CAPTCHAs continue to be the de facto standard in industry.) 

The early, now broken PayPal and the Microsoft CAPTCHAs 

discussed in [4] and [6], respectively, both relied on 

background noise and random character strings to resist 

automated attacks but did not employ character crowing.The 

KNW-CAPTCHAH would be used in practice as the 

background noise provides additional security but the 

CAPTCHA remains highly readable to humans. It compares 

the human readability and attack resistance of the KNW-

CAPTCHAH with several CAPTCHAs deployed by major 

corporations. 

 

 As the correct answers for the comparison CAPTCHAs are 

unknown, we use optimistic solving accuracy to determine 

human success. An OCR program is considered correct if it 

matches any of the human responses.  It clearly illustrate that 

both the KNW-CAPTCHAE and KNWCAPTCHAH are 

highly readable and difficult to attack; even the KNW- 

CAPTCHAE appears to have resistance to OCR comparable 
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to or surpassing CAPTCHAs currently  used by Google, 

YAHOO, and eBay.  

 

There were no computer successes against the KNW-

CAPTCHAH, yet it obtained over 94% human success. Mori 

et al. [7] successfully attack both EZ-Gimpy and Gimpy 

CAPTCHAs. KNW-CAPTCHAH would be used in practice 

as the background noise provides additional security but the 

CAPTCHA remains highly readable to human. The authors of 

[8] are able to remove the background clutter and segment the 

challenge into four character recognition problems, which are 

solved by determining which template character image 

requires the least distortion  

 

 

 

 

 

           
(a)                          (b)                         (c) 

 

 
      (d)                             (e)                       (f) 

  
                                  Fig 1.Captcha examples 

 

The authors of [8] are able to remove the background clutter 

and segment the challenge into four character recognition 

problems, which are solved by determining which template 

character image requires the least distortion to match the 

observed character image. (Performance is further improved 

using additional steps.)  

Pessimal Print introduced in Coates et al. [9], simulates low-

quality print images that challenge OCR. The CAPTCHA 

generation randomly selects a word, a font, and a set of image 

degradation parameters to thicken, crowd, fragment, and add 

noise to character images. 685 word images were generated; 

all were readable to the ten human volunteers, while almost all 

were unrecognizable to the ExpervisionTR, ABBYY Fine 

Reader, and IRIS Reader OCR programs. Furthermore, OCR 

performance was very sensitive to changes in the parameters. 

The CAPTCHAs used by Google, Yahoo!, and Windows Live 

all share similar properties: a lack of background noise, 

distortion of character or word images, and extreme crowding 

of adjacent characters. 

 Segmentation resistance is largely accomplished by character 

crowding, notably lacking from earlier, now broken 

CAPTCHAs such as the CAPTCHA service.org CAPTCHAs 

in [12]. In the PayPal CAPTCHA in [6], the Microsoft 

CAPTCHA in [4], EZ-Gimpy in [7], and Gimpy-r in [8]. 

However, this extreme crowding also makes human 

recognition a challenge. For example, is it obvious what the 

character string in the Google CAPTCHA is? In contrast with 

the methods covered above, we view CAPTCHA generation 

as correlated random field simulation.  

 

Like Pessimal Print [9], our images provide partial, noisy 

information .We also leverage Gestalt perception to maintain a 

human-readable image, as in [10] and [11]. However, our use 

of randomness is far more fundamental and thereby far harder 

for computers to deal with than prior methods. We observe 

that the human readability of random CAPTCHA images is 

captured by the site, i.e. pixel, marginal probabilities and the 

site-to-nearby-site covariances; the actual joint distribution of 

the sites is not so important. 

 

 Our method begins with a correlated random image that is 

evolved randomly a site at a time via Gibbs sampling until the 

random test word is human-readable. Our method of 

calculating each site’s conditional probability mass function 

given the nearby sites that are either known or already 

simulated gives us exactly what is required for Gibbs 

sampling.  

 

In this paper, we investigate two variants of the 

KNWCAPTCHA: the KNW-CAPTCHAE, an easy variant 

generated without any background noise, and the KNW-

CAPTCHAH, which is generated using character fragments as 

the background noise.  

 

The KNW-CAPTCHAE is used to investigate how the 

generation parameters (especially the number of Gibbs 

iterations, NG) affect the attack resistance of the resulting 

CAPTCHA. It shows both the attack resistance and human 

readability of the KNW-CAPTCHAE for various values of 

NG, where computer success is the proportion of CAPTCHAs 

where either of the OCR programs Tesseract or ABBYY 

FineReader successfully recognized it, and human success is 

the proportion of CAPTCHAs where a human successfully 

recognized it.  

 

2. KNW-CAPTCHA 

We now present how to estimate the required parameters for a 

particular KNW-CAPTCHA and use those parameters to 

generate a novel random CAPTCHA in Sections II-A and II-

B, respectively. 

 

2.1 Parameter Estimation 

It begins by generating the data for the estimation process that 

consists of many independent instances of a particular word, 

where each instance varies randomly in many ways. The 

parameters learned from this data will represent the challenge 

Word by learning the parameters (site probabilities and site-to 

nearby- site covariances) from this data, we can construct the 

conditional probabilities of the previous section and, thereby, 

do the Gibbs resampling portion of our CAPTCHA creation.  
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The algorithm for generating the data consists of selecting a 

word to serve as the KNW-CAPTCHA’s correct response and 

then generating a number of random images representing this 

word by varying fonts and placement of characters in the 

word.  

 

The word images will be constructed by joining individual 

character images. Herein, we select a random word uniformly 

over a fixed dictionary of common English words with a 

length of at least three characters. For each letter in the 

English alphabet and for each of 18 fonts, we generate 

character images denoted { f1,1, . . . , f1,26, . . . , f18,1, . . . , 

f18,26}, i.e., fi, j is the character image of the j th letter in the  

i th font. To ensure that forming a word image by joining 

random character images results in consistent horizontal 

placement of individual character images, we work with 

character images that, for a given letter, all have the same 

width. 

 

 It accomplish this, we generate trimmed or scaled character 

images for each letter as appropriate. { f1, j , . . . , f18, j }, 

where a bounding box is the smallest rectangle that encloses 

the character. For i = 1. . . 18, j = 1. . . 26,. The letters {i, j, l, r, 

t} were chosen for trimming instead of scaling since scaling 

some of their images results in very tall bounding boxes due to 

their highly variable character widths. We then generate K 

images of the chosen character string with pixel state space 

{−1, 1} = {white, black}, and nc is the number of characters in 

the character string using the following algorithm 

 

 The horizontal distance between each adjacent character’s 

bounding boxes is chosen using a random number selected 

uniformly over {1, 2, 3}. This is fixed for all K images. 

 

 The vertical displacements of characters are determined using 

the values {v0, v1, v2, . . .} of a reflecting random walk, 

moving  upward or downward one with probability 12; upon 

hitting the boundary {−25, 25}, it reflects. The random walk is 

initialized randomly over {−10... 10}. The i th character 

image, where i ∈ {1, 2, . . . , nc}, will be placed vertically by 

centering it according to the vertical center of its bounding 

box, and then shifting it up or down according to the value 

v(i−1)×6 of the random walk. This produces (n = 6, p = 12 )-

binomial shifts before reflection. This is also fixed for all K 

images.  

 

2.2 KNW-CAPTCHA Generation 
 

It  presents the KNW-CAPTCHA generation details, which 

consists of generating background noise and then simulating 

the character string, using modified Gibbs sampling with the 

parameters obtained in Section II-A, on top of the background 

noise. Introducing background noise is a common technique 

when generating CAPTCHAs since it introduces red herring 

character shapes that must be removed or ignored by a 

computer program. Our view is that the best red herrings are 

actual character pieces.  

Background noise also makes segmentation more difficult 

since, for example, vertical projection will not detect gaps 

between adjacent characters bridged by appropriate 

background noise, and connected components will view two 

adjacent characters as one if they are connected by 

background noise. We generate background noise via the 

ScatterType algorithm in [11]. While the original intent of the 

ScatterType algorithm was to produce CAPTCHAs that were 

human readable but difficult to crack, our goal is the reverse, 

produce ScatterType CAPTCHAs that are clearly unreadable 

to humans yet “readable” to computers.  

 

The character shapes produced will serve as effective red 

herrings. Automated attacks come from the original correlated 

random field and the pixel by pixel randomness in still, the 

character pieces are often erroneously detected by computer 

programs as part of the actual character string.  The 

unreadable background noise is generated using the following 

algorithm.  

 1) Choose a five-letter character string uniformly, with 

replacement, over the English alphabet. 

2) Apply the ScatterType algorithm using a fixed font and the 

following parameters KNW-CAPTCHA is generated using 

with CAPTCHA and without CAPTCHA.  

 

3. SECURITY DISCUSSION 
 

Generate an easy KNW-CAPTCHA for a character string 

consisting of two random (i.e., chosen uniformly over the 

English alphabet), lower case letters, with no background 

noise (i.e., the modified Gibbs sampling is initialized with a 

white image). 

 

 Find the global smoothed break point minimum within the 

boundaries (i.e., in the horizontal region between the first and 

last black pixels) of the generated KNWCAPTCHA using the 

above sophisticated vertical projection segmentation attack. In 

the case of a tie, select the point randomly amongst the global 

minima.  

 

 If the bounding boxes of the two characters overlap, and the 

segmentation point is within two pixels of the middle of the 

overlapping region, then consider the segmentation  correct. If 

the bounding boxes do not overlap, then consider the 

segmentation point correct if it lies anywhere in the region 

between the bounding boxes. 

 

The determination of whether the segmentation point is 

correct is slightly modified from the work which sought to 

isolate measures of segmentation performance from 

recognition engines. Since we are attempting to evaluate only 

segmentation resistance at this point, rather than recognition 

resistance, ours was an appropriate technique to adopt.  

 

We estimate ps the probability of successful segmentation, 

using the maximum likelihood estimator ˆ ps . The results are 

summarized. The segmentation performance is low despite 
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targeting character crowding and presenting simplified two 

character images without scatter noise. Furthermore, the 

segmentation performance does not vary significantly with NG 

indicating the vertical projection algorithm has difficulty with 

the basic construction of the KNW-CAPTCHA. Collectively, 

the security mechanisms in the KNWCAPTCHAH will prove 

difficult to circumvent. However, should it be successfully 

attacked, other variants may take its place. 

 

3.1 Variants 
 

The mechanism described is more general than the particular 

example we study in this paper: it can easily be extended to 

counter new attacks. For example, if an attacker is able to 

remove the background noise, one can use the striped 

correlated noise if a dictionary-based attack succeeds, one can 

use pseudo-words; if a segmentation attack succeeds, one can 

increase character crowding or decrease NG (see In fact, one 

could deploy several variants simultaneously, effectively 

reducing the reward for successfully attacking any particular 

variant. We now provide a high-level view of potentially 

useful variants; furthermore, we will discuss how a variant can 

be selected by a user of the KNW-CAPTCHA. 

 

 Sample generation many random instances of a character 

string image are generated. Parameter estimation simulation 

parameters are estimated from image samples. Initial state an 

initial state for the KNW-CAPTCHA is generated. Simulation 

re-simulates random pixels of the KNWCAPTCHA until word 

appears. 

 

This is a template method pattern meaning that we have given 

a high-level description of the algorithm while allowing 

variants to define the details of how each step is accomplished. 

Within, we studied two variants, the KNW-CAPTCHAE and 

the KNW-CAPTCHAH. The KNW-CAPTCHAE was 

deliberately designed to be vulnerable to attack by eschewing 

random vertical displacement in the sample generation step, 

and background noise. In contrast, the KNW-CAPTCHAH 

does use random vertical displacement and the initial state is 

generated using a ScatterType CAPTCHA. These two 

relatively simple differences produce significantly different 

CAPTCHAs, yet the overall algorithm remains the same. Now 

we introduce several variants to illustrate the flexibility of the 

KNW-CAPTCHA algorithm. 

 
3.2 Clustered Correlated Noise 

 

Instead of the ScatterType character fragments, we generate 

the initial state using the simulation algorithm detailed with 

pair-wise covariances set to the Euclidean distance from the 

pixel being simulated with _ = 2. The effect is an initial state 

with clustered random shapes. 

 

 

 

 

3.3 Striped Correlated Noise:  
 

It generate the initial state using one pass of the simulation 

algorithm with _ = 2. Let the pixel p being simulated have the 

coordinates (x, y), and let pixel pi have the coordinates For 

each pixel pi in the neighbourhood of p, set the pair-wise 

covariance to 0 if x < xi and y < yi, or if x > xi and y > yi ; 

otherwise set the pair-wise covariance according to the 

Euclidean distance between p and pi . This generates striped 

correlated noise.  

  

3.4 Simulated Characters  

 

 It generate the initial state using the KNW-CAPTCHAE 

algorithm with a lower NG and a random character string. This 

produces a background noise that is distinct to humans but 

difficult to eliminate automatically due to the similarity in 

form to the CAPTCHA word. A random character string is 

used instead of a word to prevent confusion between the 

background noise and the CAPTCHA word.  

3.5 Variant Selection 

 

It is clear that it is easy to generate varied CAPTCHAs using 

the methods laid out in this paper by modifying parameters or 

the steps in the CAPTCHA algorithm we have not yet 

discussed how these variants can be compared and selected. In 

the following, we will present an idea of how to accomplish 

this automatically. 

 

Any comparison should naturally take into account both attack 

resistance and human readability. However, different users of 

CAPTCHAs will place different on each quality and a 

CAPTCHA should be able to balance the two qualities. θ is 

the set of parameters determining the variant of KNW-

CAPTCHA generated, a(θ ) is the probability of an attack 

succeeding on an instance of the variant, h(θ ) is the 

probability of a human being able to read an instance of the 

variant, and w ∈[0, 1] is a weight balancing the two qualities. 

Then f (・) is a cost function, and the goal of a  CAPTCHA 

should be to minimize it.  

 

The role of w is to allow the user of a CAPTCHA to balance 

attack resistance and readability. a(θ ) and h(θ ) are 

unknowable and can only be estimated. One method of 

estimating a(θ ) would be to attempt to attack the many 

instances of the CAPTCHA with several OCR engines and 

consider it a success if any of them succeed (similar to how 

the re CAPTCHA project determines if a word image should 

be used as a CAPTCHA challenge  if any of the OCR engines 

recognize the word, and yi = 0 otherwise. h(θ ) could be 

estimated in a similar fashion, using human readability 

experiments. Then, selecting the appropriate CAPTCHA 

variant becomes a matter of minimizing the cost function over 

the evaluated variants. 
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4. Experiment and Result 
 

In the following, we describe how we measure the properties 

of the KNW-CAPTCHA and provide results. In Section III-A, 

we attack a weak variant of the KNW-CAPTCHA with 

computer programs to establish a lower-bound to the 

KNWCAPTCHAs’ attack resistance. we measure the human 

readability of the hardened KNWCAPTCHA finally; we 

measure the attack resistance together with the human 

readability of the hardened KNW-CAPTCHAs. We use 

KNW-CAPTCHAE to refer to the easy KNWCAPTCHA 

variant.  

 

4.1 KNW-CAPTCHAE Experiments 

This tactic will provide the most evidence that η is low, i.e., 

that the KNW-CAPTCHA is difficult to crack. Word accuracy 

is calculated based on the number of words recognized, and all 

Word comparisons are done ignoring case. For a particular 

word, the experiment is as follows 

1) Generate a KNW-CAPTCHAE for the word word with no 

background noise and no vertical displacement. 

2) Run the OCR program to obtain word O. 

3) Compare word K and word O. 

In order to validate the human readability of the KNW-

CAPTCHAE, we also collect human results via Amazon 

Mechanical Turk (AMT) [16] Results are summarized in 

Table I, and an example of a KNW-CAPTCHAE is provided.  

Based on these results, it appears that both OCR programs 

have great difficulty recognizing the KNW-CAPTCHAEs. In 

fact, the computer performance on the unhardened KNW-

CAPTCHAE with NG = 200 is similar to the results on the 

Google CAPTCHA (Table I), which was the most difficult for 

OCR to recognize of Google, YAHOO, and eBay. In addition, 

human performance on the KNW-CAPTCHAE is very high. 

As expected, both OCR and human performance generally 

increase . 

 
TABLE I 

95% confidence interval of computer and human 

 
 

NG  nT  ABBYY   Tesseract  Human 

 

200 1000 0.012  ± 0.007 0.000  ± 0.000 0.990   ± 0.006 

400 1000   0.015 ± 0.008 0.000     ± 0.000 0.99 1 ±   0.006 
600 1000   0.007   ± 0.005 0.002   ± 0.003 0.991   ±0.006 

800 1000   0.032   ±0.011 0.015   ± 0.008 0.996± 0.004 

1000 1000 .034       ±0.011 0.020     ± 0.009 0.993 ± 0.005 

 

4.2 KNW-CAPTCHAH Experiments 
 

In the (α, β, η)-CAPTCHA context, our β is high. The KNW-

CAPTCHA should be applied to literate English reading 

adults with normal eyesight. (In practice, alternative 

CAPTCHAs, such as an audio CAPTCHA, should be 

provided others.) Our task is to estimate β and the time to 

complete the challenge empirically. The following 

experiments use a set of 300 KNWCAPTCHAH images 

generated with NG = 800 based on the results of the previous 

sections along with visual inspection in order to balance attack 

resistance with readability. 

 

A. Online Readability Study: 
 

 To collect these results, we set up the website 

http://www.knwcaptcha.org. Volunteers participating in this 

online study were anonymous. No incentive was provided. 

The procedure was as follows. 

1)  The visitor is presented with information on how the 

experiment is conducted and how the data will be used.  

 

2)  If the user does not accept, the experiment is terminated. 

 

3)  In order to familiarize the visitor with the process, 

he or she is presented with an example of a 

KNWCAPTCHAH along with the correct response. The 

example shows a KNW-CAPTCHAH with the encoded word 

outlined, and is designed to show the visitor how to recognize 

the encoded word in noise. 

 

4) The visitor is shown a set of 25 KNW CAPTCHAHs.  

A visitor is never shown the same word more than once. 

Beside each KNW CAPTCHAH, the visitor enters a response, 

and submits the entire data set upon completion. 

 

A human’s response to a KNW-CAPTCHAH is marked as 

correct if it matches the encoded word, ignoring case and 

incorrect otherwise. A human’s response to a KNW-

CAPTCHAH is marked as correct if it matches the encoded  

word, ignoring case and incorrect otherwise. In the analysis, 

we model the trials as (β)-Bernoulli random variables.  The 

experiment yields nT responses from humans. As before, we 

use the maximum likelihood estimator βˆ to estimate β.  

 

The time to solve each challenge is calculated using the time 

elapsed from when the user is first presented with the 

CAPTCHAs to the submission of the responses. Humans 

succeeded at solving a high proportion of KNWCAPTCHAHs. 

 

A. Amazon Mechanical Turk: 
 

 In addition to collecting responses from volunteers at we used 

Amazon Mechanical Turk (AMT) [16]. AMT is an online 

service which allows requesters to submit tasks which will be 

completed by a pool of workers. The use of AMT for 

collecting human feedback in research has been established in 

several works for example, in order to be resistant to workers 

gaming the task, it is important that the task be as much effort 

to complete incorrectly as correctly.  

 

The CAPTCHA schemes are evaluated in terms of human 

readability based on the amount of agreement between three 

workers on a CAPTCHA image containing an unknown word.  

Our task of evaluating the responses to a known CAPTCHA is 

relatively straightforward and an appropriate fit for AMT. Our 
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AMT task design is similar to that of knwcaptcha.org. Each 

task submitted to AMT consisted of a KNWCAPTCHAH 

image and a response field.  

 

A batch of tasks is preceded by brief instructions and an 

example, as on knwcaptcha.org. No qualification pre-tests are 

administered, nor are workers penalized (via, for example, 

lack of payment) for wrong answers. AMT provides more 

diverse, international respondents than could be obtained by 

recruiting local volunteers While no demographic information 

is collected, a comprehensive survey of the AMT worker 

population conducted by Ross et al. [20] found a large 

population of international, young, educated workers. 

Furthermore, [19] examines the effect of demographics on 

CAPTCHA solving ability. 

 

 Its particular interest to us is that native English speakers are 

able to solve English or pseudo- English CAPTCHAs far 

faster, which indicates that the KNWCAPTCHAH is biased 

against non-native English speakers.  

 

 

 
TABLE II 

95% confidence interval of optimistic computer and human performance 

nC                 ABBYY              Tesseract        nH                 

KNW- 

CAPTCHA  300 0.00 ± 0.00 0.00   ± 0.00 9000.90   ±0.02 
Google        300 0.00 ± 0.00 0.01  ± 0.01 900 0.81   ±0.03 

YAHOO      300 0.01  ± 0.01 0.02 ± 0.01 900 0.93    ± 0.02 

eBay           300 0.05  ± 0.02 0.29  ± 0.05 900 0.97   ± 0.01 

 

 
4.3 SIMULATION RESULTS 

 
In CAPTCHA, we developed and implemented a new method 

of generating random CAPTCHAs, called KNW-CAPTCHAs, 

using random field simulation that outperforms popular 

CAPTCHAs in use today. First, we estimated the marginal 

probabilities of sites and site-to-site covariances of the KNW-

CAPTCHA based on randomly generated samples. 

 

Second, we used an efficient algorithm to simulate a new 

KNW-CAPTCHA based on these parameters in a Gibbs-like 

manner. Furthermore, we established that the KNW-

CAPTCHA is an effective separator of computer programs 

and humans.  It established that the KNW-CAPTCHA is very 

readable to humans.  

 

 
                   Fig 2. Knw-Captcha 

 

Select a random alphabet letters and draw into an dummy 

image as a background. Then select three alphabets from 

randomly and paste on approximately center position of 

image.  Split and throw the noise on that nearby characters to 

apply Black pixel values on the surrounding images Knw -

captcha has been generated by these Security aspects. 

 

Online OCR not able to recognize the character present in the 

Knw-captcha. Server has Default videos. First those videos 

have to be split into collection of frames. Then overwrite our 

Knw-captcha images in to particular position of Frames. 

Client can view the Knw-captcha as a video format called 

video CAPTCHA. 

 
             Fig 3. Video CAPTCHA 

5. CONCLUSIONS & FUTURE WORK 

In CAPTCHA, we developed and implemented a new method 

of generating random CAPTCHAs, called KNW-CAPTCHAs, 

using random field simulation that outperforms popular 

CAPTCHAs in use today. First, we estimated the marginal 

probabilities of sites and site-to-site covariances of the KNW-

CAPTCHA based on randomly generated samples; second, we 

used an efficient algorithm to simulate a new KNW-

CAPTCHA based on these parameters in a Gibbs-like manner. 

Furthermore, we established that the KNW-CAPTCHA is an 

effective separator of computer programs and humans.  

 

The colors used for the background noise and the CAPTCHA 

could change from left to right; The intent of these changes 

would be to effectively add another dimension to the problem, 

further confusing an attacker without compromising 

readability. As above, the intent would be to increase the 

dimensionality of the problem for the attacker without 

decreasing readability. 

 

In grey levels could be used to make distinguishing between 

the background and the letters themselves more difficult, or to 

make the shapes of the characters themselves less obvious.  

Finally, in this paper we used only black and white when 

generating samples. however, this method can be readily 

extended to generate CAPTCHAs with one or many grey 

levels. As above, the intent would be to increase the 

dimensionality of the problem for the attacker without 

decreasing readability. 

 

The grey levels could be used to make distinguishing between 

the background and the letters themselves more difficult, or to 

make the shapes of the characters themselves less obvious. 
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Furthermore, we established that the KNW-CAPTCHA is an 

effective separator of computer programs and human’s .The 

main challenge would be to adjust the random sample 

generation and parameter estimation methods used in this 

paper in such a way that maintains or improves readability. 
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