
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor : 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 1

Human Captcha using Video Technology

Thilagavathy.D
1
, Priya .S.V

2

1M.E. II Year, Department of Computer Science and Engineering, Sriram Engineering College,

Perumalpattu – 602 024

2Associate Professor & HOD, Department of Computer Science and Engineering, Sriram Engineering College,

Perumalpattu – 602 024

Abstract

The Captcha is the security code designed to perform

password protection to secure the authenticated user. It uses

word tests for easy human recognition. The CAPTCHAs are

then random realizations of the random CAPTCHA word

starts with an initial random field use Gibbs resampling to re-

simulate portions of the field repeatedly using until the word

becomes human-readable. In the proposed system Knw-

CAPTCHA is used to differentiate humans from computers. It

is readable only to humans. The Passwords are used means of

authentication as passwords are very convenient for users,

easier to implement and user friendly. Password based systems

suffer from two types of attacks offline attacks and online

attacks. Eavesdropping the communication channel and

recording the conversations taking place on the

communication channel is an example for offline attack.

Video CAPTCHA is used to avoid online hackers.

Keywords: Image processing, Markov random

field, security, simulation, statistical information

compression.

1. Introduction

A CAPTCHA is a “Completely Automated Public Turing test

to tell Computers and Humans Apart”, widely used to protect

online resources from abuse by automated agents. He suggests

that hard artificial intelligence (AI) problems form the test

basis and defines a (α, β, η)-CAPTCHA as a test that 1) Can

be solved by at least α proportion of humans (e.g., the English

speaking adult portion) with a probability of success greater

than β; 2) if a computer program can solve it with probability

greater than η in fixed time, then the program can be used to

solve the hard AI problem.

 A common CAPTCHA is an image of (usually alphanumeric)

characters to that are easy to identify by English-reading

humans yet translate hard AI problems for security.

Segmentation of characters within a word image is error prone

[3], and continues to be difficult for contemporary OCR

algorithms [4].Therefore, segmentation should be hard error

prone [3], and continues to be difficult for contemporary OCR

algorithms. Therefore, segmentation should be hard to ensure

an OCR-based CAPTCHA is resistant to computer programs.
Herein, we introduce a general method for generating “KNW-

CAPTCHAs” with the view that random than is really random

field simulation meaning people rather than computers will

know what they behave. A KNW-CAPTCHA is initialized as

a random field, and the CAPTCHA is then generated via

partial Gibbs re-sampling in order to provide enough

information to make the test word human-recognizable, yet

ensure that OCR remains hard.

The target population for our KNW-CAPTCHAs is English-

readers with better than 20/60 vision though we have little

control over the participants in our readability studies). We

establish high β via a readability study and endorse low η via

experiments with modern OCR programs.

We begin with an overview of past and present text based

CAPTCHAs. (While there are many alternatives to text based

CAPTCHAs, such as the image-based IMAGINATION [5],

which requires users to annotate images, text-based

CAPTCHAs continue to be the de facto standard in industry.)

The early, now broken PayPal and the Microsoft CAPTCHAs

discussed in [4] and [6], respectively, both relied on

background noise and random character strings to resist

automated attacks but did not employ character crowing.The

KNW-CAPTCHAH would be used in practice as the

background noise provides additional security but the

CAPTCHA remains highly readable to humans. It compares

the human readability and attack resistance of the KNW-

CAPTCHAH with several CAPTCHAs deployed by major

corporations.

 As the correct answers for the comparison CAPTCHAs are

unknown, we use optimistic solving accuracy to determine

human success. An OCR program is considered correct if it

matches any of the human responses. It clearly illustrate that

both the KNW-CAPTCHAE and KNWCAPTCHAH are

highly readable and difficult to attack; even the KNW-

CAPTCHAE appears to have resistance to OCR comparable

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor : 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 2

to or surpassing CAPTCHAs currently used by Google,

YAHOO, and eBay.

There were no computer successes against the KNW-

CAPTCHAH, yet it obtained over 94% human success. Mori

et al. [7] successfully attack both EZ-Gimpy and Gimpy

CAPTCHAs. KNW-CAPTCHAH would be used in practice

as the background noise provides additional security but the

CAPTCHA remains highly readable to human. The authors of

[8] are able to remove the background clutter and segment the

challenge into four character recognition problems, which are

solved by determining which template character image

requires the least distortion

(a) (b) (c)

 (d) (e) (f)

 Fig 1.Captcha examples

The authors of [8] are able to remove the background clutter

and segment the challenge into four character recognition

problems, which are solved by determining which template

character image requires the least distortion to match the

observed character image. (Performance is further improved

using additional steps.)

Pessimal Print introduced in Coates et al. [9], simulates low-

quality print images that challenge OCR. The CAPTCHA

generation randomly selects a word, a font, and a set of image

degradation parameters to thicken, crowd, fragment, and add

noise to character images. 685 word images were generated;

all were readable to the ten human volunteers, while almost all

were unrecognizable to the ExpervisionTR, ABBYY Fine

Reader, and IRIS Reader OCR programs. Furthermore, OCR

performance was very sensitive to changes in the parameters.

The CAPTCHAs used by Google, Yahoo!, and Windows Live

all share similar properties: a lack of background noise,

distortion of character or word images, and extreme crowding

of adjacent characters.

 Segmentation resistance is largely accomplished by character

crowding, notably lacking from earlier, now broken

CAPTCHAs such as the CAPTCHA service.org CAPTCHAs

in [12]. In the PayPal CAPTCHA in [6], the Microsoft

CAPTCHA in [4], EZ-Gimpy in [7], and Gimpy-r in [8].

However, this extreme crowding also makes human

recognition a challenge. For example, is it obvious what the

character string in the Google CAPTCHA is? In contrast with

the methods covered above, we view CAPTCHA generation

as correlated random field simulation.

Like Pessimal Print [9], our images provide partial, noisy

information .We also leverage Gestalt perception to maintain a

human-readable image, as in [10] and [11]. However, our use

of randomness is far more fundamental and thereby far harder

for computers to deal with than prior methods. We observe

that the human readability of random CAPTCHA images is

captured by the site, i.e. pixel, marginal probabilities and the

site-to-nearby-site covariances; the actual joint distribution of

the sites is not so important.

 Our method begins with a correlated random image that is

evolved randomly a site at a time via Gibbs sampling until the

random test word is human-readable. Our method of

calculating each site’s conditional probability mass function

given the nearby sites that are either known or already

simulated gives us exactly what is required for Gibbs

sampling.

In this paper, we investigate two variants of the

KNWCAPTCHA: the KNW-CAPTCHAE, an easy variant

generated without any background noise, and the KNW-

CAPTCHAH, which is generated using character fragments as

the background noise.

The KNW-CAPTCHAE is used to investigate how the

generation parameters (especially the number of Gibbs

iterations, NG) affect the attack resistance of the resulting

CAPTCHA. It shows both the attack resistance and human

readability of the KNW-CAPTCHAE for various values of

NG, where computer success is the proportion of CAPTCHAs

where either of the OCR programs Tesseract or ABBYY

FineReader successfully recognized it, and human success is

the proportion of CAPTCHAs where a human successfully

recognized it.

2. KNW-CAPTCHA

We now present how to estimate the required parameters for a

particular KNW-CAPTCHA and use those parameters to

generate a novel random CAPTCHA in Sections II-A and II-

B, respectively.

2.1 Parameter Estimation

It begins by generating the data for the estimation process that

consists of many independent instances of a particular word,

where each instance varies randomly in many ways. The

parameters learned from this data will represent the challenge

Word by learning the parameters (site probabilities and site-to

nearby- site covariances) from this data, we can construct the

conditional probabilities of the previous section and, thereby,

do the Gibbs resampling portion of our CAPTCHA creation.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor : 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 3

The algorithm for generating the data consists of selecting a

word to serve as the KNW-CAPTCHA’s correct response and

then generating a number of random images representing this

word by varying fonts and placement of characters in the

word.

The word images will be constructed by joining individual

character images. Herein, we select a random word uniformly

over a fixed dictionary of common English words with a

length of at least three characters. For each letter in the

English alphabet and for each of 18 fonts, we generate

character images denoted { f1,1, . . . , f1,26, . . . , f18,1, . . . ,

f18,26}, i.e., fi, j is the character image of the j th letter in the

i th font. To ensure that forming a word image by joining

random character images results in consistent horizontal

placement of individual character images, we work with

character images that, for a given letter, all have the same

width.

 It accomplish this, we generate trimmed or scaled character

images for each letter as appropriate. { f1, j , . . . , f18, j },

where a bounding box is the smallest rectangle that encloses

the character. For i = 1. . . 18, j = 1. . . 26,. The letters {i, j, l, r,

t} were chosen for trimming instead of scaling since scaling

some of their images results in very tall bounding boxes due to

their highly variable character widths. We then generate K

images of the chosen character string with pixel state space

{−1, 1} = {white, black}, and nc is the number of characters in

the character string using the following algorithm

 The horizontal distance between each adjacent character’s

bounding boxes is chosen using a random number selected

uniformly over {1, 2, 3}. This is fixed for all K images.

 The vertical displacements of characters are determined using

the values {v0, v1, v2, . . .} of a reflecting random walk,

moving upward or downward one with probability 12; upon

hitting the boundary {−25, 25}, it reflects. The random walk is

initialized randomly over {−10... 10}. The i th character

image, where i ∈ {1, 2, . . . , nc}, will be placed vertically by

centering it according to the vertical center of its bounding

box, and then shifting it up or down according to the value

v(i−1)×6 of the random walk. This produces (n = 6, p = 12)-

binomial shifts before reflection. This is also fixed for all K

images.

2.2 KNW-CAPTCHA Generation

It presents the KNW-CAPTCHA generation details, which

consists of generating background noise and then simulating

the character string, using modified Gibbs sampling with the

parameters obtained in Section II-A, on top of the background

noise. Introducing background noise is a common technique

when generating CAPTCHAs since it introduces red herring

character shapes that must be removed or ignored by a

computer program. Our view is that the best red herrings are

actual character pieces.

Background noise also makes segmentation more difficult

since, for example, vertical projection will not detect gaps

between adjacent characters bridged by appropriate

background noise, and connected components will view two

adjacent characters as one if they are connected by

background noise. We generate background noise via the

ScatterType algorithm in [11]. While the original intent of the

ScatterType algorithm was to produce CAPTCHAs that were

human readable but difficult to crack, our goal is the reverse,

produce ScatterType CAPTCHAs that are clearly unreadable

to humans yet “readable” to computers.

The character shapes produced will serve as effective red

herrings. Automated attacks come from the original correlated

random field and the pixel by pixel randomness in still, the

character pieces are often erroneously detected by computer

programs as part of the actual character string. The

unreadable background noise is generated using the following

algorithm.

 1) Choose a five-letter character string uniformly, with

replacement, over the English alphabet.

2) Apply the ScatterType algorithm using a fixed font and the

following parameters KNW-CAPTCHA is generated using

with CAPTCHA and without CAPTCHA.

3. SECURITY DISCUSSION

Generate an easy KNW-CAPTCHA for a character string

consisting of two random (i.e., chosen uniformly over the

English alphabet), lower case letters, with no background

noise (i.e., the modified Gibbs sampling is initialized with a

white image).

 Find the global smoothed break point minimum within the

boundaries (i.e., in the horizontal region between the first and

last black pixels) of the generated KNWCAPTCHA using the

above sophisticated vertical projection segmentation attack. In

the case of a tie, select the point randomly amongst the global

minima.

 If the bounding boxes of the two characters overlap, and the

segmentation point is within two pixels of the middle of the

overlapping region, then consider the segmentation correct. If

the bounding boxes do not overlap, then consider the

segmentation point correct if it lies anywhere in the region

between the bounding boxes.

The determination of whether the segmentation point is

correct is slightly modified from the work which sought to

isolate measures of segmentation performance from

recognition engines. Since we are attempting to evaluate only

segmentation resistance at this point, rather than recognition

resistance, ours was an appropriate technique to adopt.

We estimate ps the probability of successful segmentation,

using the maximum likelihood estimator ˆ ps . The results are

summarized. The segmentation performance is low despite

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor : 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 4

targeting character crowding and presenting simplified two

character images without scatter noise. Furthermore, the

segmentation performance does not vary significantly with NG

indicating the vertical projection algorithm has difficulty with

the basic construction of the KNW-CAPTCHA. Collectively,

the security mechanisms in the KNWCAPTCHAH will prove

difficult to circumvent. However, should it be successfully

attacked, other variants may take its place.

3.1 Variants

The mechanism described is more general than the particular

example we study in this paper: it can easily be extended to

counter new attacks. For example, if an attacker is able to

remove the background noise, one can use the striped

correlated noise if a dictionary-based attack succeeds, one can

use pseudo-words; if a segmentation attack succeeds, one can

increase character crowding or decrease NG (see In fact, one

could deploy several variants simultaneously, effectively

reducing the reward for successfully attacking any particular

variant. We now provide a high-level view of potentially

useful variants; furthermore, we will discuss how a variant can

be selected by a user of the KNW-CAPTCHA.

 Sample generation many random instances of a character

string image are generated. Parameter estimation simulation

parameters are estimated from image samples. Initial state an

initial state for the KNW-CAPTCHA is generated. Simulation

re-simulates random pixels of the KNWCAPTCHA until word

appears.

This is a template method pattern meaning that we have given

a high-level description of the algorithm while allowing

variants to define the details of how each step is accomplished.

Within, we studied two variants, the KNW-CAPTCHAE and

the KNW-CAPTCHAH. The KNW-CAPTCHAE was

deliberately designed to be vulnerable to attack by eschewing

random vertical displacement in the sample generation step,

and background noise. In contrast, the KNW-CAPTCHAH

does use random vertical displacement and the initial state is

generated using a ScatterType CAPTCHA. These two

relatively simple differences produce significantly different

CAPTCHAs, yet the overall algorithm remains the same. Now

we introduce several variants to illustrate the flexibility of the

KNW-CAPTCHA algorithm.

3.2 Clustered Correlated Noise

Instead of the ScatterType character fragments, we generate

the initial state using the simulation algorithm detailed with

pair-wise covariances set to the Euclidean distance from the

pixel being simulated with _ = 2. The effect is an initial state

with clustered random shapes.

3.3 Striped Correlated Noise:

It generate the initial state using one pass of the simulation

algorithm with _ = 2. Let the pixel p being simulated have the

coordinates (x, y), and let pixel pi have the coordinates For

each pixel pi in the neighbourhood of p, set the pair-wise

covariance to 0 if x < xi and y < yi, or if x > xi and y > yi ;

otherwise set the pair-wise covariance according to the

Euclidean distance between p and pi . This generates striped

correlated noise.

3.4 Simulated Characters

 It generate the initial state using the KNW-CAPTCHAE

algorithm with a lower NG and a random character string. This

produces a background noise that is distinct to humans but

difficult to eliminate automatically due to the similarity in

form to the CAPTCHA word. A random character string is

used instead of a word to prevent confusion between the

background noise and the CAPTCHA word.

3.5 Variant Selection

It is clear that it is easy to generate varied CAPTCHAs using

the methods laid out in this paper by modifying parameters or

the steps in the CAPTCHA algorithm we have not yet

discussed how these variants can be compared and selected. In

the following, we will present an idea of how to accomplish

this automatically.

Any comparison should naturally take into account both attack

resistance and human readability. However, different users of

CAPTCHAs will place different on each quality and a

CAPTCHA should be able to balance the two qualities. θ is

the set of parameters determining the variant of KNW-

CAPTCHA generated, a(θ) is the probability of an attack

succeeding on an instance of the variant, h(θ) is the

probability of a human being able to read an instance of the

variant, and w ∈[0, 1] is a weight balancing the two qualities.

Then f (・) is a cost function, and the goal of a CAPTCHA

should be to minimize it.

The role of w is to allow the user of a CAPTCHA to balance

attack resistance and readability. a(θ) and h(θ) are

unknowable and can only be estimated. One method of

estimating a(θ) would be to attempt to attack the many

instances of the CAPTCHA with several OCR engines and

consider it a success if any of them succeed (similar to how

the re CAPTCHA project determines if a word image should

be used as a CAPTCHA challenge if any of the OCR engines

recognize the word, and yi = 0 otherwise. h(θ) could be

estimated in a similar fashion, using human readability

experiments. Then, selecting the appropriate CAPTCHA

variant becomes a matter of minimizing the cost function over

the evaluated variants.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor : 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 5

4. Experiment and Result

In the following, we describe how we measure the properties

of the KNW-CAPTCHA and provide results. In Section III-A,

we attack a weak variant of the KNW-CAPTCHA with

computer programs to establish a lower-bound to the

KNWCAPTCHAs’ attack resistance. we measure the human

readability of the hardened KNWCAPTCHA finally; we

measure the attack resistance together with the human

readability of the hardened KNW-CAPTCHAs. We use

KNW-CAPTCHAE to refer to the easy KNWCAPTCHA

variant.

4.1 KNW-CAPTCHAE Experiments

This tactic will provide the most evidence that η is low, i.e.,

that the KNW-CAPTCHA is difficult to crack. Word accuracy

is calculated based on the number of words recognized, and all

Word comparisons are done ignoring case. For a particular

word, the experiment is as follows

1) Generate a KNW-CAPTCHAE for the word word with no

background noise and no vertical displacement.

2) Run the OCR program to obtain word O.

3) Compare word K and word O.

In order to validate the human readability of the KNW-

CAPTCHAE, we also collect human results via Amazon

Mechanical Turk (AMT) [16] Results are summarized in

Table I, and an example of a KNW-CAPTCHAE is provided.

Based on these results, it appears that both OCR programs

have great difficulty recognizing the KNW-CAPTCHAEs. In

fact, the computer performance on the unhardened KNW-

CAPTCHAE with NG = 200 is similar to the results on the

Google CAPTCHA (Table I), which was the most difficult for

OCR to recognize of Google, YAHOO, and eBay. In addition,

human performance on the KNW-CAPTCHAE is very high.

As expected, both OCR and human performance generally

increase .

TABLE I

95% confidence interval of computer and human

NG nT ABBYY Tesseract Human

200 1000 0.012 ± 0.007 0.000 ± 0.000 0.990 ± 0.006

400 1000 0.015 ± 0.008 0.000 ± 0.000 0.99 1 ± 0.006
600 1000 0.007 ± 0.005 0.002 ± 0.003 0.991 ±0.006

800 1000 0.032 ±0.011 0.015 ± 0.008 0.996± 0.004

1000 1000 .034 ±0.011 0.020 ± 0.009 0.993 ± 0.005

4.2 KNW-CAPTCHAH Experiments

In the (α, β, η)-CAPTCHA context, our β is high. The KNW-

CAPTCHA should be applied to literate English reading

adults with normal eyesight. (In practice, alternative

CAPTCHAs, such as an audio CAPTCHA, should be

provided others.) Our task is to estimate β and the time to

complete the challenge empirically. The following

experiments use a set of 300 KNWCAPTCHAH images

generated with NG = 800 based on the results of the previous

sections along with visual inspection in order to balance attack

resistance with readability.

A. Online Readability Study:

 To collect these results, we set up the website

http://www.knwcaptcha.org. Volunteers participating in this

online study were anonymous. No incentive was provided.

The procedure was as follows.

1) The visitor is presented with information on how the

experiment is conducted and how the data will be used.

2) If the user does not accept, the experiment is terminated.

3) In order to familiarize the visitor with the process,

he or she is presented with an example of a

KNWCAPTCHAH along with the correct response. The

example shows a KNW-CAPTCHAH with the encoded word

outlined, and is designed to show the visitor how to recognize

the encoded word in noise.

4) The visitor is shown a set of 25 KNW CAPTCHAHs.

A visitor is never shown the same word more than once.

Beside each KNW CAPTCHAH, the visitor enters a response,

and submits the entire data set upon completion.

A human’s response to a KNW-CAPTCHAH is marked as

correct if it matches the encoded word, ignoring case and

incorrect otherwise. A human’s response to a KNW-

CAPTCHAH is marked as correct if it matches the encoded

word, ignoring case and incorrect otherwise. In the analysis,

we model the trials as (β)-Bernoulli random variables. The

experiment yields nT responses from humans. As before, we

use the maximum likelihood estimator βˆ to estimate β.

The time to solve each challenge is calculated using the time

elapsed from when the user is first presented with the

CAPTCHAs to the submission of the responses. Humans

succeeded at solving a high proportion of KNWCAPTCHAHs.

A. Amazon Mechanical Turk:

 In addition to collecting responses from volunteers at we used

Amazon Mechanical Turk (AMT) [16]. AMT is an online

service which allows requesters to submit tasks which will be

completed by a pool of workers. The use of AMT for

collecting human feedback in research has been established in

several works for example, in order to be resistant to workers

gaming the task, it is important that the task be as much effort

to complete incorrectly as correctly.

The CAPTCHA schemes are evaluated in terms of human

readability based on the amount of agreement between three

workers on a CAPTCHA image containing an unknown word.

Our task of evaluating the responses to a known CAPTCHA is

relatively straightforward and an appropriate fit for AMT. Our

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor : 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 6

AMT task design is similar to that of knwcaptcha.org. Each

task submitted to AMT consisted of a KNWCAPTCHAH

image and a response field.

A batch of tasks is preceded by brief instructions and an

example, as on knwcaptcha.org. No qualification pre-tests are

administered, nor are workers penalized (via, for example,

lack of payment) for wrong answers. AMT provides more

diverse, international respondents than could be obtained by

recruiting local volunteers While no demographic information

is collected, a comprehensive survey of the AMT worker

population conducted by Ross et al. [20] found a large

population of international, young, educated workers.

Furthermore, [19] examines the effect of demographics on

CAPTCHA solving ability.

 Its particular interest to us is that native English speakers are

able to solve English or pseudo- English CAPTCHAs far

faster, which indicates that the KNWCAPTCHAH is biased

against non-native English speakers.

TABLE II

95% confidence interval of optimistic computer and human performance

nC ABBYY Tesseract nH

KNW-

CAPTCHA 300 0.00 ± 0.00 0.00 ± 0.00 9000.90 ±0.02
Google 300 0.00 ± 0.00 0.01 ± 0.01 900 0.81 ±0.03

YAHOO 300 0.01 ± 0.01 0.02 ± 0.01 900 0.93 ± 0.02

eBay 300 0.05 ± 0.02 0.29 ± 0.05 900 0.97 ± 0.01

4.3 SIMULATION RESULTS

In CAPTCHA, we developed and implemented a new method

of generating random CAPTCHAs, called KNW-CAPTCHAs,

using random field simulation that outperforms popular

CAPTCHAs in use today. First, we estimated the marginal

probabilities of sites and site-to-site covariances of the KNW-

CAPTCHA based on randomly generated samples.

Second, we used an efficient algorithm to simulate a new

KNW-CAPTCHA based on these parameters in a Gibbs-like

manner. Furthermore, we established that the KNW-

CAPTCHA is an effective separator of computer programs

and humans. It established that the KNW-CAPTCHA is very

readable to humans.

 Fig 2. Knw-Captcha

Select a random alphabet letters and draw into an dummy

image as a background. Then select three alphabets from

randomly and paste on approximately center position of

image. Split and throw the noise on that nearby characters to

apply Black pixel values on the surrounding images Knw -

captcha has been generated by these Security aspects.

Online OCR not able to recognize the character present in the

Knw-captcha. Server has Default videos. First those videos

have to be split into collection of frames. Then overwrite our

Knw-captcha images in to particular position of Frames.

Client can view the Knw-captcha as a video format called

video CAPTCHA.

 Fig 3. Video CAPTCHA

5. CONCLUSIONS & FUTURE WORK

In CAPTCHA, we developed and implemented a new method

of generating random CAPTCHAs, called KNW-CAPTCHAs,

using random field simulation that outperforms popular

CAPTCHAs in use today. First, we estimated the marginal

probabilities of sites and site-to-site covariances of the KNW-

CAPTCHA based on randomly generated samples; second, we

used an efficient algorithm to simulate a new KNW-

CAPTCHA based on these parameters in a Gibbs-like manner.

Furthermore, we established that the KNW-CAPTCHA is an

effective separator of computer programs and humans.

The colors used for the background noise and the CAPTCHA

could change from left to right; The intent of these changes

would be to effectively add another dimension to the problem,

further confusing an attacker without compromising

readability. As above, the intent would be to increase the

dimensionality of the problem for the attacker without

decreasing readability.

In grey levels could be used to make distinguishing between

the background and the letters themselves more difficult, or to

make the shapes of the characters themselves less obvious.

Finally, in this paper we used only black and white when

generating samples. however, this method can be readily

extended to generate CAPTCHAs with one or many grey

levels. As above, the intent would be to increase the

dimensionality of the problem for the attacker without

decreasing readability.

The grey levels could be used to make distinguishing between

the background and the letters themselves more difficult, or to

make the shapes of the characters themselves less obvious.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor : 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 7

Furthermore, we established that the KNW-CAPTCHA is an

effective separator of computer programs and human’s .The

main challenge would be to adjust the random sample

generation and parameter estimation methods used in this

paper in such a way that maintains or improves readability.

REFERENCES

[1] M. Blum, L. Von Ahn, J. Langford, and N. Hopper. The

CAPTCHA Project, Completely Automatic Public Turing Test to

Tell Computers and Humans Apart. Dept. Comput. Sci., Carnegie-

Mellon Univ., Pittsburgh, PA [Online]. Available:

http://www.captcha.net

[2] L. von Ahn, M. Blum, N. Hopper, and J. Langford, “CAPTCHA:

Using hard AI problems for security,” in Proc. Adv. Cryptol.—

EUROCRYPT Int. Conf. Theory Appl. Cryptograph. Tech., Warsaw,

Poland, LNCS 2656. May 2003, pp. 294–311.

[3] R. Casey and E. Lecolinet, “A survey of methods and strategies in

character segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 18, no. 7, pp. 690–706, Jul. 1996.

[4] J. Yan and A. El Ahmad, “A Low-cost attack on a Microsoft

CAPTCHA,” in Proc. 15th ACM Conf. Comput. Commun. Security,

2008, pp. 543–554.

[5] R. Datta, J. Li, and J.Wang, “Imagination: A robust image-based

CAPTCHA generation system,” in Proc. 13th Annu. ACM Int. Conf.

Multimedia, 2005, pp. 331–334.

[6] K. Kluever. (2008). Breaking the PayPal HIP: A Comparison of

Classifiers [Online]. Available: http://ritdml.rit.edu/handle/1850/7813

[7] G. Mori and J. Malik, “Recognizing objects in adversarial clutter:

Breaking a visual CAPTCHA,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit., vol. 1. 2003, pp. 134–141.

[8] G. Moy, N. Jones, C. Harkless, and R. Potter, “Distortion

estimation techniques in solving visual CAPTCHAs,” in Proc. IEEE

Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2. Jun.–Jul.

2004, pp. 23–28.

[9] A. Coates, H. Baird, and R. Faternan, “Pessimal print: A reverse

turing test,” in Proc. 6th Int. Conf. Document Anal. Recognit., 2001,

pp. 1154–1158.

[10] M. Chew and H. Baird, “Baffletext: A human interactive proof,”

Proc. SPIE, vol. 5010, pp. 305–316, Mar. 2003.

